Conspiracy Cafe

Conspiracy, alternative news, history, intelligence agencies

Blog

A STEROSCOPIC METHOD OF VERIFYING APOLLO SURFACE IMAGES (THEY'RE FAKE!)

Posted by George Freund on May 16, 2015 at 12:30 AM

by OLEG OLEYNIK, Ph.D.c
Previously of the Department of Physics and Technology
Kharkov State University, Ukraine


Photographs taken on the lunar surface during the Apollo missions are regarded as the most compelling pieces of evidence that mankind went to the Moon.

The photographic validation method presented here is based on the detection of two-dimensional objects among three-dimensional objects, and determining the mutual arrangement of these objects in space and the distance to them by applying a technique known as stereoscopic parallax.

The word parallax derives from the Greek parallaxis meaning "alteration" where parallax is the difference in the apparent position of objects caused by shifting camera position. To achieve such a result, images are overlapped and are deducted/subtracted from each other using the function "difference" in an image processing application such as Photoshop®. Optical transformations are used when images are subtracted. During image convergence simple operations are applied: x and y axis scaling, rotation and distortion plus two additional processes: perspective and shift.

Such processes are referred to below as "optical transformations".  Objects further than two kilometres distant, with a minor camera shift, have zero parallax.
Using Photoshop® the sequence of steps deployed is as follows:

  1. Two overlapping images are placed on different layers – thereby creating a PSD file.
  2. Application of function "difference" to the upper layer (subtraction of images from each other).
  3. Optical transformations are applied: axes x and y scaling, rotation, distortion, perspective and in addition a shift to the requirement specified above. As a result maximum density black for the background is obtained.
  4. The layer is returned to the normal view: function "normal".
  5. The PSD file is pruned to remove non-overlapping parts.
  6. Sequentially, the converted layers are carried over into the application’s GIF animator.
  7. A stereoscopic GIF image is obtained that permits the creation of a 3D effect, even on a flat screen.
Stereo Wiggle
Fig. 1.  A stereoscopic image or ‘wiggle’ stereoscopy. GIF-animation allows the creation of a crude sense of dimensionality, even with monocular vision. Stereoscopic imagery can also determine the relative position of objects in space and enable judgment of their remoteness. Image Wikipedia
If any given image was taken inside a pavilion or dome with a panoramic background, i.e. when there are no distant objects with null parallax, then such a 2-dimensional object can be detected among any 3D bodies. In the case of such a finding, reaching the conclusion that there was deception could be stated with confidence.

Example 1.  The method of creating a stereoscopic image is examined in the following example of images of the Zmievskaya power plant, Kharkov region, Ukraine. The camera shift is 1.5 m.


Fig. 2. The Zmievskaya power plant Kharkov region Ukraine. HiRes image1, HiRes image2.

The distance to the power plant is about 4 kms and to the tree planting (left horizon) is about 2 kms.

The image convergence shown below (the main criteria is the most complete background subtraction, and since the distance is more than 3 kms, the parallax is zero).


Fig. 3. Image subtraction. 
                        
Images are processed in a GIF-animator to obtain a stereoscopic image:
         

Fig. 4. Stereoscopic image of the Zmievskaya power plant.
(For more detailed information on creating stereoscopic images and obtaining intermediate images see this article – in Russian).

It is now possible to measure the parallax and the distance to all remote objects. The distance La to any object A, is calculated as follows:
Knowing the distance to the front edge: 5 m, and the front edge offset: 85 mm (can be measured by a ruler, the two white grasses), plus the offset of the nearest electric pylon, about 1.2 mm. From the proportions ratio the distance to the nearer pylon is acquired, namely 350 metres; to the second pylon with the parallax of 0.6 mm is 700 metres. Distance to the trees (offset is about 0.2 mm) is close to 2 kms – at the boundary of parallax occurrence.
               
Conclusion: These simple image transformation operations preserve perspective proportions.

Similarly, as in the case of examining the parallax of the Apollo lunar surface images – where, according to NASA maps of the landing sites, the distance to the mountain background should be more than 5 kms – evidence of stereoscopic imagery is expected. If such evidence is absent, the image cannot have been taken in the stated environment, such a image must have been created elsewhere in a studio.

Having looked at stereoscopic parallax in images of terrestrial objects, some Apollo images are studied from the photographic record.

The Apollo 15 LM touched down at 22:16:29 UTC on July 30 1971 at Hadley (26°7'55.99"N  3°38'1.90"E), near Hadley Rille (also referred to as Rima Hadley), Montes Apenninus and Mons Hadley. The first lunar rover was used for extensive reconnaissance. Within 67 hours the crew carried out three EVAs, spending 18.5 hours in total away from the LM. A new 500mm lens, camera and accessories were used, which have provided photographic opportunities not available to previous missions. Lift off from the lunar surface was on August 2, 1971 and the astronauts returned to Earth on August 7.
 

The Apollo 15 crew comprised:
  • Commander David R. Scott (Dave)
  • Command Module Pilot Alfred M. Worden
  • Lunar Module Pilot James B. Irwin (Jim)

Fig. 5. Topographic map of the Apollo 15 landing site.
A series of Apollo 15 photographs will be considered and stereoscopic parallax or apparent change in the relative positions of objects will be analysed.

The first series. Astronaut Dave takes a few panorama images in EVA-1 near the LM, AS15-86-11601 and AS15-86-11602.

Fig. 6. The LM with Jim standing at the rear of the rover; the Apennine front and the crater St. George are located in the background. The distance from the camera to the lunar module and rover is about 10 metres, and the Apennines and the crater should be 4-8 kms away. 
A rectangle marks the sections of the photographs which were deducted for parallax examination and separation of 3D objects from any 2D objects.


Fig. 7. The subtraction of the two photos after the transformations of scaling, rotation, and distortion is shown on the left. The right image shows the parallax achieved after merging the two frames.
Nearby objects: the LM, the rover, and astronaut Jim are shifting relative to each other. The Apennines and the crater St. George are also moving as a whole. (Moreover, the shadow is changing on the mountains and the crater.) This finding indicates that it is less than 300 metres to the background (the ‘mountains’;) instead of 5 kilometres!

Therefore, with such a small alteration to the camera position in Dave's hands (several tens of centimetres), the mountains should not move, they should remain static (zero parallax).

In addition, the Apollo 15 stereoscopic photos feature a clear separation line between the ‘mountains’ and the foreground. Based on the distance between the camera and rover, the distance to the panorama of the ‘lunar’ scape cannot be more than 150 metres.

Conclusion: It is very probable that these images were taken on Earth in a studio stage.

The second series. Jim is doing some panoramic photography (Fig. 8). The distance from his camera to the LM is approximately 40 m. Jim's ALSEP Pan at the end of EVA-2.

Fig. 8. On the left Dave collects samples; Mount Hadley; LM in the centre; behind the LM the sun is shining into the camera and the Apennines are in the distance – over 35 kms; the Apennines and the crater St. George are on the right at a distance of 5-8 kms.
The two images with a view of Mount Hadley were selected from the Panorama (distance is about 30 kms, the height more than 2.5 kms) AS15-87-11849 and AS15-87-11850.

Fig. 9. Note the numerous boot prints left by Dave and Jim. Rectangles highlight the selected areas selected for parallax examination.

Fig. 10. The subtraction of two images after scaling, rotation, and distortion is shown on the left. The stereoscopic image after merging two images is on the right. 
Despite a slight offset of the camera, the mountains are moving, which contradicts the condition of distant mountains. If the image subtraction criteria are changed, the most darkened background condition is replaced with the most darkened front area.
 

Fig. 11. The subtraction of the front parts of the two images is on the left. The parallax resulting from the two merged images is on the right. This image was obtained by the subtraction of two photos taken with a camera shift of not more than 20 cms. Transformations of scale, rotation, reverse distortion, perspective, shift and the convergence of the two images into a stereoscopic image were applied.
An error estimate is now performed. Assuming that this is a real lunarscape, then the distance from the astronauts to the lunar horizon should be 1.5 kms and the distance to the objects in the background, such as the foot and summit of Mount Hadley, is 20-35 kms.

The offset of 100 sampled pixels below the horizon is calculated – the AB line, obtaining an average shift ± a pixels (depending on the image resolution). The shift magnitude obeys Gaussian distribution, meaning this is noise.

A sample of 50 points is selected above the line (AB), i.e. objects located at a distance of 20-35 kms. Giving an offset value of (10-50)a pixels. The shift direction has a vector and is not subject to Gaussian distribution. Moreover, the higher a dot the greater value of the shift – at the foot it is 10a, at the top 50a pixels.

It is logical to assume that if any lunar objects at the interval [0.01; 1.5] kms are static, the noise amounts to ± a, the parallax is zero, then for more distant objects at the interval [20; 35] kms, the parallax is likewise zero with the same value of noise, i.e. the shift is ± a pixels and the shift value obeys a Gaussian distribution.

However, the results indicate otherwise. Objects above the (AB) line are moving synchronously with increase in shift depending on the height above the horizon.

Conclusion: Mount Hadley moves and ‘bows’. The wrong initial assumption was probably made that this is a real lunarscape. As this research demonstrates, this setting must be a totally artificial panorama, several tens of metres in depth with a mock ‘Hadley’ in the background, moving horizontally and vertically to create an illusion of remoteness and of perspective.

A series of Apollo 15 images are now examined near Rima Hadley for the presence of stereoscopic parallax. Rima Hadley measures in length at least 135 kms, with an average width ~1.2 and average depth ~370 m (from Greeley 1971 – quoted in F. Leverington, 2008).

The third series. Dave and Jim make a few trips in the rover to Rima Hadley (Fig. 12) to collect samples. One of the panoramas comprises photos from AS15-82-11165 to AS15-84-11284.


Fig. 12. Jim is holding the camera. Rima Hadley is in the foreground. Dave is collecting samples near the rover. Mount Hadley is in the background. The sun is shining into the camera in the centre. The Apennines are over 35 kms away. Apennines Front and the crater St. George are on the left.
(Panorama assembled by the author)
In two panorama frames is the bottom of Rima Hadley, which extends to Apennines Front and the crater St. George. The distance from the camera to Rima edge is about 5 m, to the Apennines and the crater is 4-8 kms. The frames are taken with a shift of no more than a few tens of centimetres. AS15-82-11178 and AS15-82-11179.                

Fig. 13. The view of Rima Hadley, Apennines Front and the crater St. George.
Rectangles mark the sections used for parallax examination.


Fig. 14. The foreground subtraction of the two images after scaling, rotation, distortion, shift and perspective is on the left. On the right is the resulting parallax obtained after merging the two frames.
It is possible to see the movement of the surface areas relative to each other along the edge of the trench between points A and B. This situation cannot occur in real world photography.

Conclusion: These images were probably taken on Earth in a dome-shaped studio location where movable panorama backgrounds were installed, and even treated afterwards by further adjustment in a photographic lab.

Fig. 15. Landscape and Traverse map of Apollo 15 landing site by NASA artist (showing stations 1-14).
Images AS15-85-11423 and AS15-85-11424 were selected, taken at station 2 with Rima Hadley observation.

Fig. 16. Images AS15-85-11423 and AS15-85-11424 station 2 with a view of Rima Hadley. Photo camera stereobase is not more than 0.5m.

Fig. 17. Lunar Topophotomap of Rima Hadley, Apollo 15. Green dot marks the photo sessions site.
The topophotomap (Fig. 17) shows that the opposite slope is over 1 km away, the depth is 300 metres, and it is 7 kms to Rima Hadley bow. It is impossible to excavate an artificial canyon of similar size. Therefore, if fakery was involved, the opposite slope would have to be ‘painted’ or have a length of several tens of metres, simulating a lunar landscape. On the other hand, if the photographs are genuine, the parallax analysis will show that the distances correspond to the actual lunar surroundings, confirming the NASA record.

CONTINUED...

Categories: New World Order